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Synthetic Geometry

Synthetic geometry is that kind of geometry which deals purely with geometric

objects directly endowed with geometrical properties by abstract axioms.  This is in

contrast with a procedure which constructs �geometric objects� from other things; as,

for example, analytic geometry which, with the artifice of a coordinate system,

models points by n-tuples of numbers.  Synthetic geometry is the kind of geometry

for which Euclid is famous and that we all learned in high school.

Modern synthetic geometry, however, has a more logically complete and consistent

foundation.  In this chapter the pattern of this foundation will be adapted, informed

by the previous physical considerations, to develop a synthetic system of axioms

which do not entail such things as uniformity or isotropy.  This geometry is a global

one but it is hoped that its elaboration, like that of Euclidean geometry, will be

instructive for the development of a similar, but more general, local theory.

2.1 Incidence Geometry

The most basic of geometrical notions are introduced by the concept of an incidence

geometry.  Assuming basic ideas from set theory, it is abstractly defined in terms of a

set P whose elements will be called points and a collection of subsets L of P called

lines satisfying three axioms.  

Axiom 1:  Every line contains at least two points.  

Axiom 2:  There are three points which are not all contained in one line.  

Axiom 3:  There is a unique line containing any two points.  

The points referred to in these axioms are, of course, all distinct.  Generally, points

will be denoted by capital letters from beginning or middle of the alphabet and lines

will be denoted by small letters from the middle of the alphabet.
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The first axiom just rules out vacuity.  The second axiom guarantees �at least two

dimensions�; otherwise it would hardly be worth calling a geometry.  The third

incidence axiom has more substantial content.  It both
�
 requires that there be a line

connecting any pair of points and prohibits lines from converging to intersect twice.

These simple ideas are sufficient to establish some of the usual terminology and little

else.  A point contained in a line is said to lie on the line.  Points are collinear if they

are contained in the same line.  Two lines with a point in common are said to

intersect.  Two lines which do not intersect are called parallels.  The theorems that

are possible are little more than restatements of the axioms such as the following.

Theorem 2.1.1.  If two lines have two points in common then they are identical.

Incidence geometry is just the beginning of, not the object of, this study.  There is no

point in dwelling on it or belaboring the obvious.

2.2 Metric Geometry

There are two different approaches to synthetic geometry that can be followed from

this point.  One is the pure synthetic geometry
�
 of Euclid and Hilbert which

continues with additional abstract axioms.  And the other is metric geometry
�
, due to

George David Birkhoff,  which introduces the concept of a numerical measure of

distance etc. in clear departure from the spirit of the Greek approach to geometry.

The course taken herein is closer to this last.  This would have been regarded with

great suspicion by the ancient Greeks and may not seem genuinely synthetic to some.

                                                

�
 In a local version of this theory both contraries should be accommodated globally.  Therefore this

axiom will have to be modified in a more general theory.�
 See the book on non-Euclidean geometry by Greenberg.�
 See the book on metric geometry by Millman and Parker.  People whose background is in topology

and analysis rather than geometry should be made aware that this established geometric term is not a

synonym for metric space.  Nor is the word �metric� being used in the sense with which they are

accustomed; rather, following Birkhoff, it just refers to the existence of numeric measures.
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However, the significant differentiation between analytic and synthetic geometry

does not turn on the use of analysis per se.  Modern treatments of pure synthetic

geometry essentially contain the axioms of the real number system
�
 which entail

analysis anyway.  But they are not based on coordinate systems (that is, modeling the

geometry by n-tuples) like manifold theory, do not hypothesize a Riemannian metric,

etc.  It is precisely the assumptions about space that the use of such methods entail

which this paper aims to avoid because, by generalizing from an algebraic model,

they may be inadvertently specialized in a physically inappropriate way.  By this

criterion, referring to the approach of this paper as synthetic is justified.

For there to be a genuine distinction between the pure and metric approaches, some

of the properties which allow the construction of the number system would have to be

dropped from the pure axiom system.  For instance, a large part of geometry can be

obtained without continuity.  Perhaps there is another, purer, way to obtain

essentially the same results.  From the point of view of physics this possibility is

especially interesting since the concept of distance poses considerable

epistemological problems.

In this regard, the question arises: is the distance measure unique?  Or: can it be

transformed in some way so as to preserve the interweaving structure
�
 of the lines?  If

not, then the measure must, in some sense, be derived from the structure and is not

fundamental.  Being able to construct a distance from physical structure would be a

considerable conceptual advance for physics.  However, such possibilities and

thoughts will not be pursued further here.  They might be worth more consideration if

the results obtained in this work turn out to be of physical use.

                                                

�
 In Greenberg�s Axiom system: the first 3 betweenness axioms, aspects of the first 3 congruence

axioms and the continuity axioms.�
 For example, one possibility is to apply a scale factor, smoothly varying with direction, along each

line.
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Directly introducing a distance measure is simpler and clearer than pure synthetic

geometry as long as no questionable physical significance is attributed to it in the

process.  The result is considerable consolidation.  Furthermore, this facilitates

disentangling those essential aspects (which concern things like continuity) of the

usual axioms of pure synthetic geometry from �physical� aspects (which concern

things like isotropy) which are too special.  Therefore, such �impure� means will be

used without further apology.

Definition
�

.  For a line, m ÎL , a function r m m� : ´ ® R  which has the following

properties will be called a ruler for m.

(i)  It is a bijection on either variable if the other is held constant.

(ii)  It is antisymmetic: r A B r B A A B m� �( , ) ( , ) ,= - " Î .

(iii)  It is additive: r A B r B C r A C A B C m� � �( , ) ( , ) ( , ) , ,+ = " Î .

A line which has a ruler will be called a ruled line.

The points on a ruled line inherit properties by being in a one-to-one correspondence

with real numbers.  Roughly speaking, a ruling defines continuity and imposes an

order on a line.  That is, it orders the points in the line so that there are points around

and between other points without any holes.  It provides such properties at once and

in a unified manner in place of a collection of pure axioms which do so piecemeal.

Because of antisymmetry: r A A A m� ( , ) = " Î0  for any ruler.  Therefore

r A B� ( , ) = 0  iff A B=  since a ruler is a bijection.  Furthermore, given any fixed

origin point, O, on a ruled line, m, then for all other points, A, on that line the

quantities r O A� ( , )  are a bijection between those points and the reals from which the

                                                

�
 The definition of a ruler used here differs from the usual concept (in metric geometry) which is

essentially a synonym for a coordinate system.  It is more physically intuitive and is more adaptable to

a localized theory.  Line coordinatization will be deduced.  This is actually somewhere between the

pure synthetic approach and that of Birkhoff.
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ruler can be obtained,

r A B r O B r O A� � �( , ) ( , ) ( , )= - ,

because of addition and antisymmetry.  This is called a coordinate system for the line

and it exhaustively characterizes the nature of lines.

Note that any one-to-one function composed with such a coordinate system is also a

coordinate system corresponding to a ruler produced from it as above.  Since such a

transformation may rearrange all the points, just the existence of rulers and

coordinate systems are rather weak properties.  Even composition by a continuous,

monotonic function, tho it will yield the same topological properties, may produce a

quite different coordinate system and rulers.

However, by fixing a particular ruler to be associated with each line it is possible to

proceed to attribute more geometric significance to these special rulers.

Axiom 4.  There is a particular collection of rulers which contains exactly one

for every line.  The rulers in this collection will be called geometric rulers.

These geometric rulers order the lines internally, measure the distances between their

points and establish congruences in a particular and fixed way.  They exhaustively

characterize the internal nature of lines but they do not, by themselves, entail any

relationships between different lines.  Nevertheless, by means of these rulers, the

pervasive intersecting lines are, so to speak, an ordered and continuous framework

which knits space together in some way.  By this means, characteristically in

synthetic geometry, the lines and their geometric rulers serve the function which the

artifice of coordinates do in analytic geometry or charts do for a manifold.

Note that multiplying any one of these rulers by any real number except zero yields

another ruler which endows the line with exactly the same ordering and congruences.

It is possible, therefore, to change the �scale factor� of a geometric ruler without
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altering the internal structure of its line.  Since this scale factor cannot be

continuously passed thru zero, however, there are two disconnected collections of

these equivalent geometric rulers with �opposite signs�.  These distinguish the two

different directions along the line and will be said to have opposite orientations.  The

absolute scale of the rulers will become geometrically significant only when making

comparisons between lines.  The orientation will be crucial in relating �nearby� lines

to each other is a consistent way.

Since between any two points, A and B, there is a line, say m, (and therefore a

geometric ruling which can be used) a distance function
�
 can be defined by

d A B r A B r O B r O A� � �( , ) ( , ) ( , ) ( , )= = - 2.2.1

between any two points.  An incidence geometry in which all the lines have a

coordinate system related to a distance in this way is called
�
 a metric geometry.  In

distinction to this usual distance function, a signed distance measure, based on

orientation, will be introduced later.  Its use will be found preferable in this paper.

2.3 Elementary Concepts
�
.

In terms of the geometric rulers some needed concepts can now be introduced.  For

any two endpoints, A C¹ , on a line m define
�
 a segment as follows.

{ }AC B m r A B r A C� �= Î £ £| ( , ) ( , )0 1 2.3.1

                                                

�
 The standard geometrical definition is given on p.28 of Millman and Parker.  It is distinguished from

the topological concept of a metric (Roman, v.1, p.189) by not requiring the triangle inequality.�
 Millman and Parker, p.30.�
 These concepts are all familiar and entailed by metric geometry per se.  For example, see Chapter 3

of Millman and Parker.  The presentation is merely adapted to use the present axiom system and

illustrates its application.  But the important thing to understand is that, altho the setting may be

unfamiliar, these ideas are exactly like those of high school geometry.�
 Note that the notation, AB, used for segments (and also that, AB , which will be introduced later for

segment measure) is not that used in many books.  This convention follows that used in Greenberg;

which is more consistent than the more common notation.  For example, if AB  were used to denote a

segment then logically a point should be denoted by A  and ABC  would be a triangle!
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Obviously this is independent of scale and so, in particular, gives the same result for

either possible orientation of the geometric ruler.  Now, from the addition and

symmetry properties of rulers

r A B

r A C

r A C r B C

r A C

r C B

r C A

�

�

� �

�

�

�

( , )

( , )

( , ) ( , )

( , )

( , )

( , )
=

-
= -1

and so

0 1 0 1£ £ Û £ £
r A B

r A C

r C B

r C A

�

�

�

�

( , )

( , )

( , )

( , )
.

Therefore AC CA= ; that is, the segments are the same, as a set, irrespective of order

even tho the values of a ruler change sign with order.  The distance function provides

a notion of congruence between segments in the usual way.

If B ACÎ  and B A C¹ ,  then B  is said to be between A and C.  Clearly, from the

above, B is also between C and A.  If A, B and C are any three distinct points on a

line m then there are only three possibilities.
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Thus one, and only one, of any three distinct points on a line must be between the

other two.

If B is between A and C then
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But since 0 < r A B r A C� �( , ) ( , ) , dividing by this factor gives:
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Considerably more, but similar, algebra gives:
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Therefore if B is between A and C then AC AB BC= È .

Other common results can be obtained also.  For example, by combining several

cases of the above, then

AC AB BCÍ È

for A, B and C any three distinct points on a line.

Any point, A, on a line, m, divides it into two parts.  These two parts are the sets 

{ }B m r A B�Î ³| ( , ) 0   and  { }B m r A B�Î - ³| ( , ) 0 ,

called rays, which have only the point A, called their vertex, in common.  These will

be called opposite rays.  They result from either the line�s geometric ruler or its

negative (a geometric ruler of opposite orientation) and so correspond to the two

orientations of their line.  Note that if two rays of a line have the same orientation,

that is if they are both derived from either the line�s ruler or its negative, then one is

contained in the other.  Their mutual intersection is one of the original rays but their

intersection with any ray of the opposite orientation is not.  This is a way to tell

whether or not two rays of a line have the same orientation without reference to the

rulers.

This makes it possible to make a general definition that any two rays whose

intersection is one of themselves have the same direction and to further define the

equivalence class of such rays to be a direction in space.  Directions will be a
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principal element of the geometric theory being developed.  A direction entails a line

and an orientation of that line.  Every line has two directions corresponding to its two

orientations which will be called opposite or inverse directions.  It is most convenient

to deal with directions and it will usually not be necessary to explicitly specify their

lines.  A direction and a point on its line determine a ray; this is the most convenient

way for rays to be identified.  When the vertex point is clear from the context a ray

may be referred to by the direction alone.  Generally, both directions and rays will be

denoted by capital letters from the end of the alphabet.  In figures they will be

indicated by arrows pointing out the extension of the (associated) rays.  Also, if T is a

direction or ray then the notation T
�

 will be used to denote the direction or ray

opposite to it.  These notations are illustrated in the following figure.

2.4 Oriented Measure

It is necessary to think carefully about and settle on the appropriate way to measure

the �distance� between points.  Such a measure has two different functions.  One is:

given a measure to locate a point on a line.  For this purpose a signed measure, like a

ruler, always smoothly distinguishes between nearby points but a distance function

A
m

T

A
mS=T

_

A

T
R

S

Figure 1: Rays and Directions
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does not.  The other function is: given points to determine the �distance� between

them; as, for example, for establishing congruences.  For this a distance function or

the absolute value is usually used.  The first is like an independent variable or the

argument of a function.  The second is like a dependent variable or the value of a

function.  It is preferable to always measure �distance� in the same way.  Otherwise

the theory will be confused by apparent special cases and discontinuities that arise

only from the inconsistency.  Since it is natural to use a signed (continuous) measure

for function arguments these considerations urge that it be used in all cases.  Only in

this way can functions involving �distance� be inverted, expressed in implicit form,

or composed with each other.

The problem with doing this consistently in geometry arises from the fact that there is

more than one path connecting two points.  One path may traverse the line, m,

connecting, say, the points A to C, to get between them.  The other may �go around�

(via A-B-C) as in the figure below.  Consider the distance between the intermediate

points on these trajectories and a fixed point, P, located between the endpoints.  The

direct line distances, which go thru zero along that path, must have opposite signs at

the endpoints.  The roundabout distances can never vanish on their path since it does

not go thru P.  So, if they vary continuously the endpoint distances must have the

same sign.  This seems to be an inconsistency: the distance measure for distinct

points ought not to have two different signs!  The conventional practice of just taking

the absolute value amounts to ignoring this problem.  Resolving it leads to a useful

concept.

A

B

m
C

P

Figure 2: Alternate Paths
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This resolution results from realizing that two different things are actually being

measured.  The �distances� on the direct path are all measured on a single line as it is

traversed by a point.  The �distances� to points on the path A-B-C are measured on a

variety of different lines which rotate away from the line m and back to it.  The

change that transpires is not so much in the �location� of the point, whose �distance�

to P on its line may well be nearly constant, as in the direction of its ray.  The initial

and final measures are actually being taken according to measures of opposite

orientation.  These observations are the basis of how segments will be measured in

this paper.

Definition.  Given two points, A and B, on a line, m, and an orientation or direction,

T, for that line then

AB
r A B T

r A B

�

�

=
-
ì
í
î

( , )

( , )

  if  has the same orientation as the ruler

  otherwise

is the signed distance or oriented segment measure.  This is not a function of the

points alone but also of a specified orientation.  This is all and the only thing that the

notation AB  will ever denote.

Since two points determine a line, explicit reference to the line of a measure is

redundant and will hereafter be omitted.  The line is implied by the orientation or

direction anyway.  And as long as context makes clear which of the two possible

orientations is intended the orientation might also be omitted.  In any case, for

simplicity and compactness the intended orientation will not be indicated on the

measure.  It will be indicated separately; usually in diagrams by an arrow as in the

A B
T

AB > 0

A B
S=T

_
AB < 0

Figure 3: Segment Measure and Orientation
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figure above.  In the first case, T denotes the orientation being applied.  The second

case demonstrates the application of the opposite orientation.

This way of measuring segments is more complicated than the usual distance

function and it may seem inconvenient at first.  But it becomes clear as the theory is

developed that it is natural.  It turns out to be the key to handling various essential

ideas, such as defining trigonometric functions, consistently.  (Note that it includes

the usual distance as a special case: just select the orientation so as to always make

the measure positive.  It is sometimes essential, however, not to have to do this.)  The

important thing to remember is that, in measuring a segment, a direction needs to be

specified also.  In this way, direction becomes a fundamental element of the theory.

Certain direction specifications may become ambiguous in special cases and produce

confusing complications.  (For example, in the case of the distance function

mentioned above the direction specification is ambiguous at zero.)  Use of the signed

segment measure provides an understanding of the source of such problems and

terms with which to deal with them.

2.5 Continuity

It is desirable that, roughly speaking, the segment measures on "neighboring" lines fit

together in a smooth and continuous way.  This will be ensured by the following.

Axiom 5.  In any geometric construction, those segment measures which are 

mutually dependent are mutually thrice differentiable (except, possibly, in 

situations where a direction becomes ambiguous).  When there is more than 

one independent variable in the construction this refers to partial derivatives 

and includes the mixed partials as well.
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Consider an example to illustrate the application of this axiom and the use of

segment measure.  In the figure shown below, there is a fixed point P on a line m.

For an orientation T of m, a variable point Q on the line will be located with respect

to P by the signed segment measure PQ .  Then, a fixed point A not on m will

determine a (non-zero) distance QA  which, as a function of PQ , will be called the

point-to-line function.  Note that this is a real valued function of a real variable.  One

possible choice for the orientation, R, that determines the value of this function might

be that for the usual distance: that is, so that QA  is always positive.  Then the

continuity axiom just requires that this function always be thrice differentiable

(except when PA = 0  and R becomes ambiguous for vanishing argument).  In the

Euclidean case, for example, this function is:

PA PA PQ PQ
� �

2- +cosq ,

where q  is the angle (properly defined) between T and S, an arbitrarily chosen

direction for the line between P and A.  It is apparent that this quantity is actually a

function of both directions and both distances.

This function is an important concept.  But, it will turn out that the more natural form

is that given by the following definition.  This is only easy to express by use of the

signed measure.

A

P Q
m

R

S

T

Figure 4: Point-to-Line Function
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Definition.  For the orientation, R, chosen such that QA  has the same sign as PA

the family of functions with the value

QA S PA PQ�= ( ; )

and the argument PQ  will be called line-to-line functions.  A specific function in

this family is identified by the two directions S and T (which determine the line, m,

and the intersection point P) and the segment measure PA  (called the parameter,

which locates the point A on S).  The direction S will be called the base ray while T

will be called the solitary ray.

These functions have two variables.  There is an ambiguity of direction when

PA = 0 , as before.  Otherwise, according to Axiom 4, the third derivatives of both

variables, including the mixed partials, exist.

For an example consider the Euclidean plane.  Let the directions T and S be

determined by the angles q �  and q � , respectively, counterclockwise from some

arbitrary reference direction.  If PA L=  and PQ x=  then

S L x L
x

L

x

L
� � �( ; ) cos( )= - - + æ

èç
ö
ø÷

1 2

�

q q 2.5.1

is the line-to-line function.  The positive square root is always used.  In particular,

note that when L is negative this expression gives the right answer with no need to

consider another case for the complementary angle and that the function varies

smoothly with the directions.

2.6 The Geodesic Hypothesis

In the conventional developments of synthetic geometry substantial axioms

concerning the congruence of angles and triangles are introduced.  In Birkhoff�s

approach this takes the form of axioms for angle measure.  These produce the
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familiar uniform, isotropic and twist free space of neutral geometry.  In accordance

with the ideas of the introduction this will not be done.  Instead the geodesic

hypothesis will be introduced.

Axiom 6.  For any three distinct points, A B C, , ÎP ,

AB BC AC+ ³ ,

the triangle inequality is satisfied.  The equality obtains only if the points are 

collinear and B is between A and C.

The absolute values of the measures are distance-like on their lines and can be used

to establish �congruences� between segments on different lines.  Note, in passing,

that the distance function mentioned before, in view of the geodesic hypothesis,

satisfies all the axioms needed to make the space of this paper a metric space.  The

geodesic hypothesis means that all lines are, roughly speaking, �straight� or

�geodesics�.  It relates measures on different lines to each other in a geometric way

that goes beyond mere continuity and gives some meaning to the congruence

relations they entail.  This hypothesis makes the way that the geometric rulings knit

the space together of a special kind and is the source of the richness of the resulting

theory.

While the internal structure of lines has been given by hypothesis, it remains to give

as complete a characterization as possible of the nature of the rest of the space.  It is

surprising that, on the basis of the axioms given, it will eventually be possible to

derive nearly definitive properties of angles and triangles in place of the abandoned

congruence axioms.  Furthermore, the synthetic construction of an angle-like natural

measure of direction will be possible.  All these results flow from the geodesic

hypothesis.  The Euclidean axioms by which these sorts of things are usually

obtained are, therefore, not necessary for them.  Rather the usual axioms merely give

them in a particular form.  For instance, they give the natural angle measure in the
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form of the familiar Euclidean angle which turns out to be a special case of a more

general quantity.

2.7 Euclidean vs. Physical Geometry

The differential synthetic geometry entailed by this axiom system will be called a

physical geometry for convenience.  In many ways the two dimensional version of

physical geometry is similar to ordinary synthetic Euclidean plane geometry.  Axioms

1-3 are the same.  Axiom 4 has been shown to be equivalent to the existence of

coordinate systems on the lines which is the corresponding axiom in Birkhoff�s ruler

and protractor formulation.  It is known that Euclidean geometry satisfies the

continuity axiom and that its lines satisfy
�
 the geodesic hypothesis.  Therefore,

Euclidean geometry is a special case of physical geometry and so it must be possible

to specialize any result obtained to the Euclidean case.  Considering this example will

be instructive at every point of the investigation.

The differences are that all the assumptions which lead to uniformity or isotropy have

been excised and replaced with other, physically motivated, axioms which make no

such assumptions.  Accordingly, it is to be expected that the local geometrical

characteristics of the space specified by these axioms may vary with position and

direction.  It is reasonable to call such a geometry a differential geometry altho it

arises from a point of view which may be somewhat alien to conventional differential

geometers.

2.8 Busemann�s Examples

Noted mathematician Herbert Busemann has done some work tangential to that of

this paper.  In the course of it he gave a type of example which in some cases are

                                                

�
 See the Appendix.
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physical geometries.  They show that rather singular behavior is possible in a

physical geometry:  For instance, either all parallel lines can converge at infinity or

all parallel lines can diverge at infinity.  The demonstration of such possibilities is

interesting but not physically remarkable.

A more interesting point
�
 is that since Bussman�s examples are not Riemannian this

shows that physical geometry is not necessarily Riemannian.

These examples also suggest a more telling physical conclusion because their

distance function is constructed by a physically bizarre process.  That is, it is a

mathematical contrivance, not based on any physically intelligible principles, solely

for the purpose of artificially satisfying the axioms.  This is not to disparage

Busemann�s ingenuity or the usefulness of such contrivances for the purpose of

supplying mathematical counterexamples.  However, that it is possible for such a

distance function to satisfy the axioms is a clear indication of their physical

inadequacy.  The present axiom system must be incomplete.  A physically

satisfactory geometry ought to be restricted to more natural structures.  This

suspicion will ultimately be reinforced by the general characterization which can be

derived for physical geometry�s tangent space.  So far, however, suitable additional,

physically based, axioms have not been discovered to complete the theory.

The appendix contains a discussion of Busemann�s construction where anyone can

read it but it will not be a pointless diversion from the subject at hand.

2.9 A Natural Example

Ultimately it will be possible to deduce the most general scaling, isotropic physical

geometry (tho this demonstration is beyond the scope of the introductory material in
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this paper).  Scaling means that any figure may be constructed at an arbitrary scale

and all other properties (e.g. the angle derivatives, ratios of segments etc.) remain

invariant.  Isotropy means that the properties of the space do not vary with direction:

�rotation� of figures is an isomorphism.  This special geometry is natural in the sense

that it is a consequence of combining these physically meaningful characteristics

with the axioms of physical geometry.

This geometry is a Cartesian plane (that is, the points are ordered pairs of numbers

and the lines are the usual lines) upon which the following distance function is

imposed.

d x y t x y m x y x y g x y e
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which leaves only one free parameter in the geometry.

Obviously, when m vanishes this reduces to Euclidean geometry as a special case.

Here it is tacitly assumed that the discriminant in the square root is positive.  This

entails a transcendental inequality

4

�
�

	
e m

� �� �� ��� ����� ����
³

�

which it is clearly possible to satisfy for small m (that is, in the interesting vicinity of

the Euclidean case) of either sign.  (For the other sign of the discriminant the nature

of the geometry changes in character.)  This is an example of a physical geometry

with a naturally derived structure which nevertheless has both non-Euclidean and

non-Riemannian characteristics (it does not have a Euclidean tangent space).
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2.10 Global and Local Differential Geometry

Like ordinary synthetic geometry, this geometric system is a global one.  That is, the

axioms apply between any points and over all distances.  Because such a global

geometry cannot include many geometries of great mathematical or physical interest,

such as those of the sphere or of planetary orbits, it might be considered of minor or

specialized interest.

To include the more interesting phenomenon a geometry must be local.  That is, the

axioms, rather than applying to the whole plane, must apply only to any sufficiently

small, but finite, neighborhood of any point.  In this way the possibility of

topological complications are not inadvertently and unnecessarily excluded while

specifying the nature of the geometry.

There are also conceptual physical considerations which argue toward a similar

attitude.  Making distant comparisons, or even comparisons between substantially

distinct directions, are epistemologically questionable procedures which would be

best avoided.  Accordingly, for instance, it would be physically preferable to regard

the triangle inequality as pertaining only to triangles all of whose sides �nearly�

coincide with a common line.  No attempt will be made here to give this a precise

meaning; that is a task to be undertaken when a local theory is developed.

Nevertheless, the asymptotically flat geometries which global physical geometry can

be expected to include ought to be of considerable intrinsic interest to both physics

and mathematics.  Physically, if these axioms hold then space must at least have their

logically consequent properties.  If, on the other hand, some of the consequences are

not physical then space must violate these axioms in some way.  Similarly,

everything deduced from the axioms must hold for the geometry of Riemann or

Riemann's geometry must violate the axioms in some way.  Understanding any of

these possibilities promises insight.
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Furthermore, this global geometry is the essential foundation for the desired local

theories.  Working out its consequences can be expected to be instructive as to how

to construct a similar local geometry.  There are two ways it can then be used to

construct a local theory.  The first is to modify the axiom system to make it local

based on the understanding gained from the global theory.  The second is to construct

a �manifold� theory based on the tangent space of this theory in a way similar to that

by which conventional manifolds are based on a Euclidean tangent space.

2.11 Next

The next chapter will begin the exploration of the consequences of the axiomatic

system that has now been set forth.  Then, for simplicity, Chapter 4 will add an

axiom that will specialize to the case of two dimensions.  Building on these

foundations, in Chapter 5 the concept of direction will be developed setting the stage

for the investigation of tangent space (not included in this thesis).


